September 30, 2021

Ms. Michelle Arsenault
National Organic Standards Board
USDA-AMS-NOP

Docket: AMS-NOP-21-0038

RE: Livestock Subcommittee – 2023 Sunset Reviews

Dear Ms. Arsenault:

Thank you for this opportunity to provide comment to the National Organic Standards Board (NOSB) on its 2023 Sunset Review.

The Organic Trade Association (OTA) is the membership-based business association for organic agriculture and products in North America. OTA is the leading voice for the organic trade in the United States, representing over 9,500 organic businesses across 50 states. Our members include growers, shippers, processors, certifiers, farmers' associations, distributors, importers, exporters, consultants, retailers and others. OTA's mission is to promote and protect organic with a unifying voice that serves and engages its diverse members from farm to marketplace.

OTA thanks NOSB for carefully considering each livestock production material scheduled for review as part of the 2023 Sunset Review cycle. Materials placed on the National List for use in organic livestock production should remain on the National List if: 1) they are consistent with organic farming; 2) they are still necessary to the production of the agricultural product because of the unavailability of wholly natural substitute products in organic production; and 3) no new information has been submitted demonstrating adverse impacts on humans or the environment (OFPA SEC. 2118 [7 U.S.C. 6517] National List). Furthermore, decisions must be transparent, non-arbitrary, and based on the best current information and in the interest of the organic sector and public at large. It’s critical that NOSB hear from certified farmers on whether these inputs are consistent with and necessary for organic production, or whether there are other effective natural or organic alternatives available.

About OTA Sunset Surveys
OTA is submitting results to our Sunset Surveys created for each input under review as part of the 2023 Sunset Review cycle. These electronic surveys include about 10 questions addressing the necessity (crop and livestock) or essentiality (handling) of each input. See Appendix A for a sample survey. Our surveys do not address information regarding the impacts on human health or the environment.
The surveys are open to any NOP certified organic operation. The names of the companies submitting the information are confidential (not disclosed to OTA). To ensure wide distribution of the surveys beyond OTA membership, OTA worked with Accredited Certifying Agencies (ACAs) to distribute the survey to all of their clients as well as to targeted clients they know are using the inputs under review. OTA also worked through its Farmers Advisory Council (ota.com/FAC) to help assist in distribution to NOP certified farmers.

Results of OTA Sunset Surveys
OTA has received 32 responses on our 2023 Livestock Sunset Surveys (11 are new responses since the spring meeting). Below is a summary of the feedback received via OTA’s Sunset Surveys to date.

§205.603 – Synthetic substances allowed for use in organic livestock production.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Summary of Responses</th>
<th>Average rating of Necessity (from 1 to 5, with 1 being “unnecessary” and 5 being “critical /would leave organic without it”)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activated charcoal – §205.603(a)(6)</td>
<td>3 Responses received from certified organic operations that include activated charcoal in their organic system plan for raising dairy cows.</td>
<td>4.3</td>
</tr>
</tbody>
</table>

The material is necessary because:
- One of the only substances to combat toxic gut – used as the primary treatment
- Activated charcoal is an important ingredient if we have an animal we are concerned has ingested something causing upset.
- To control upset stomach, particularly in calves with e coli scours and other stomach ailments where toxins are causing discomfort and illness. Used as needed when toxins are causing illness, does not occur frequently.

Frequency of use:
- Seldom, as needed
- Seldom, only as needed when a certain condition arises
- As needed when toxins are causing illness, does not occur frequently

Alternative are not sufficient because:
- There are no other toxin binders
- Good management can reduce need but not eliminate need, animals will still get sick sometimes

If the material were prohibited:
- We would lack an option for treating toxic gut in cows
<table>
<thead>
<tr>
<th>Substance</th>
<th>2 Responses received from certified organic operations that include calcium borogluconate in their organic system plan for raising dairy cows.</th>
</tr>
</thead>
</table>
| **Calcium borogluconate** for milk fever treatment. §205.603(a)(7) | **The material is necessary because:**
- For treatment of milk fever in dairy cows
- Extremely necessary for fresh cow management of down cows.
- For healthy dairy cows

Frequency of use:
- Seldom, only as needed
- As needed

Alternative are not sufficient because:
- No alternative substances or practices are sufficient to eliminate need of this substance

The National List references multiple substances for the treatment of ketosis and milk fever, including propylene glycol, calcium propionate, calcium borogluconate and electrolytes. Are they equally necessary and effective? Do organic producers have the correct tools for treatment of all stages of the development of these related conditions?
- Calcium borogluconate is the most effective option

If the material were prohibited:
- Could have health implications for cows
- We would have less in our toolbox to treat severe milk fever causing the loss of older lactation cows (Critical, would leave organic without it)

<table>
<thead>
<tr>
<th>Substance</th>
<th>1 Response received from certified organic operations that include calcium propionate in their organic system plan for raising dairy cows.</th>
</tr>
</thead>
</table>
| **Calcium propionate** for milk fever treatment. §205.603(a)(8) | **The material is necessary because:**
- For treatment of milk fever in dairy cows
- Extremely necessary for fresh cow management of down cows.
- Used in treating sub clinical milk fever in fresh cows. To aid in maintaining normal Ca cycling within the body when blood Ca is nearing a critical level

Frequency of use:
- Seldom, only as needed
- Less than 10% of fresh cows receive this.

Alternative are not sufficient because:
- No alternative substances or practices are sufficient to eliminate need of this substance

The National List references multiple substances for the treatment of ketosis and milk fever, including propylene glycol, calcium propionate, calcium borogluconate and electrolytes. Are they equally necessary and effective? Do organic producers have the correct tools for treatment of all stages of the development of these related conditions?
- Calcium propionate is the most effective option

If the material were prohibited:
- Could have health implications for cows
- We would have less in our toolbox to treat severe milk fever causing the loss of older lactation cows (Critical, would leave organic without it)
Alternatives:
- Calcium borogluconate is an alternative
- Calcium gluconate, but is more invasive to the cow to administer

The National List references multiple substances for the treatment of ketosis and milk fever, including propylene glycol, calcium propionate, calcium borogluconate and electrolytes. Are they equally necessary and effective? Do organic producers have the correct tools for treatment of all stages of the development of these related conditions?
- All are necessary
- As long as these are maintained on the approved list
- It would increase the risk of at risk cows developing clinical milk fever, an animal welfare concern

If the material were prohibited:
- Could have health implications for cows

<table>
<thead>
<tr>
<th>Chlorine materials (Calcium hypochlorite, Chlorine dioxide, Hypochlorous acid, Sodium hypochlorite)</th>
<th>4 Responses received from certified organic operations that include chlorine materials in their organic system plan for raising dairy cows and processing milk into food products such as yogurt. Sodium hypochlorite is specifically referenced as the chlorine material in use by these respondents. Please also see further comments from OTA on chlorine in our Handling Subcommittee Sunset Review comments.</th>
</tr>
</thead>
</table>
| Allowed for disinfecting and sanitizing facilities and equipment. §205.603(a)(10) | The material is necessary because:
- sanitation - COP and manual cleaning
- to clean milk pipelines and milking equipment, as well as to clean and disinfect calf hutches between calves. It is necessary for sanitation and disease control
- milking equipment sanitizer
- Chlorine materials are vital to maintain a clean and sanitary environment that promotes health and safety of people and animals.
Frequency of use:
- Routine, daily
- As needed
Alternative are not sufficient because:
- No alternative substances or practices are identified as sufficient to eliminate need of this substance
- Hydrogen peroxide is not allowed per Federal PMO as a sanitizer, not all certifiers allow phosphoric acid because other inactive ingredients make it prohibited for use as a sanitizer. TWO SETS OF FEDERAL RULES DO NOT ALIGN AND NO ONE WILL TAKE THIS PROBLEM UP! You can't hardly be in compliance with both state |
<p>| 5 (Critical, would leave organic without it) |</p>
<table>
<thead>
<tr>
<th>Material</th>
<th>2 Responses</th>
<th>Frequency of use</th>
<th>Alternative are not sufficient because</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaolin pectin</td>
<td>Response received from a certified organic operation that includes kaolin pectin in their organic system plan for raising dairy cows.</td>
<td>- Not used a lot, but important for those situations. Doubt too many people are using it on a prophylactic basis.</td>
<td>- No alternative substances or practices are identified as sufficient to eliminate need of this substance</td>
</tr>
<tr>
<td></td>
<td>The material is necessary because:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Otherwise known as pepto bismal – really important for those rare occasions that cows end up with ulcers – I don’t know of other options.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency of use:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Not used a lot, but important for those situations. Doubt too many people are using it on a prophylactic basis.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- As needed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alternative are not sufficient because:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- No alternative substances or practices are identified as sufficient to eliminate need of this substance</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If the material were prohibited:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Could have negative health effects on cows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mineral oil</td>
<td>Responses received from certified organic operations that include mineral oil in their organic system plan for raising dairy cows.</td>
<td>- Seldom, as needed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The material is necessary because:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- To treat intestinal compaction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Very necessary for intestinal compaction – other than very invasive surgery – this is the best option.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency of use:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Seldom, as needed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Very rarely but when it is needed, there is no alternative</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- as needed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Alternatives:
- Natural oils do not work, they get digested and do not move or break up the compaction.
- You can take good care of your animals, but compaction can still happen in rare cases.
- Organic rice Bran; Laxid Bolus. not as effective

If the material were prohibited:
- Negative effects on cow health
- Animal welfare would be impacted, also economic because the animal would either die or have to be sold if non-organic treatments are used.
- Would eliminate an effect health treatment for dairy cattle

Nutritive supplements - injectable supplements of trace minerals, vitamins, and electrolytes. §205.603(a)(21)

4 Responses
received from certified organic operations that include nutritive supplements in their organic system plan for raising dairy cows. Vitamin D, Vitamin C, Vitamin B, Vit B12 and Multimin are specifically reference by the respondents.

The material is necessary because:
- This is a broad category, but in general I would say yes as organic producers use as a boost to immune systems in animals not as an across the board treatment, but usually to help in an animal having some kind of disease stress.
- Injectable vitamin supplements help to boost immune response for animals that are fighting disease. It also helps with our fertility program. We are limited on what we can treat challenged animals with and nutrient supplements helps the animals immune system do the fighting, helping to avoid then need for antibiotics.
- Used for dairy cows as an immune system boosts-critical because organic treatment methods work by helping the cow help herself.
- Helps animals with shipping fever and low energy when animals have been immunocompromise

Frequency of use:
- As needed
- Routinely, as needed when certain conditions arise
- Often

Alternative are not sufficient because:
- No alternative substances or practices are identified as sufficient to eliminate need of this substance

Do advances in organic ration formulations change the need for injectable nutritive supplements?
- They are still helpful for animals having some kind of disease stress
- Possibly, but not in young calves
- No, when animals need large boosts to jump start immune response, injection is the fastest way to get them a boost. Also, sick animals are not likely to eat the amount required so feed rations would not help at all.

(Critical, would leave organic without it)
Feed Rations alone do not replace the need for injectable nutritive supplements such as when an animal becomes ill or refuses feed.

If the material were prohibited:
- I believe we would have to treat more animals with antibiotics, making them ineligible for organic production.
- Sick animals would no longer be able to be treated with specific vitamins to boost their immune systems at crucial times, so their welfare would be lower. Injectable vitamins work very well in the organic health management system.

Propylene glycol for treatment of ketosis

§205.603(a)(27)

5 Responses received from certified organic operations that include propylene glycol in their organic system plan for raising dairy cows.

The material is necessary because:
- Necessary for treating ketosis – certainly dextrose is an option as well, but requires IV therapy. One of the two would be critical for fresh cow management.
- Propylene glycol is another tool we can use for ketosis when other things don’t work.
- Used in treating ketosis in fresh cows

Frequency of use:
- As needed
- less than 15% of fresh cows

Alternatives:
- Dextrose - works but requires IV therapy
- We have used Ketonic. It is effective but sometimes not effective enough
- we have tried using molasses in place of with less efficacy
- Organic Glycerin; this is an effective treatment but availability is limited

The National List references multiple substances for the treatment of ketosis and milk fever, including propylene glycol, calcium propionate, calcium borogluconate and electrolytes. Are they equally necessary and effective? Do organic producers have the correct tools for treatment of all stages of the development of these related conditions?

If the material were prohibited:
- Would reduce options for treatment of ketosis
- We would see increased risk of displaced abomasums in fresh cows
<table>
<thead>
<tr>
<th>Substance</th>
<th>Responses</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidified sodium chlorite</td>
<td>1 Response</td>
<td>Received from a certified organic operation that includes acidified sodium chlorite in their organic system plan for raising dairy cows.</td>
</tr>
<tr>
<td></td>
<td>The material is necessary because:</td>
<td>Certainly Iodine is a preferred method, but this sodium chlorite seems a necessary option in a rotation of pre and post dips against pathogens.</td>
</tr>
<tr>
<td></td>
<td>Alternatives:</td>
<td>- Iodine</td>
</tr>
<tr>
<td></td>
<td>Have there been changes in the availability of iodine that would reduce the need for acidified sodium chlorite?</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>If the material were prohibited:</td>
<td>Could impact milk quality</td>
</tr>
<tr>
<td>Zinc sulfate</td>
<td>3 Responses</td>
<td>Received from certified organic operations that include zinc sulfate in their organic system plan for raising dairy cows.</td>
</tr>
<tr>
<td></td>
<td>The material is necessary because:</td>
<td>One of several options for treating hoof rot – most producers use in a rotation. - We use zinc as a foot treatment as needed for dairy cows. In certain occasions it is more effective than copper sulfate. - Used for hoof rot.</td>
</tr>
<tr>
<td></td>
<td>Frequency of use:</td>
<td>As needed</td>
</tr>
<tr>
<td></td>
<td>Alternative are not sufficient because:</td>
<td>Have tried using copper sulfate, iodine and sugar (no response regarding efficacy)</td>
</tr>
<tr>
<td></td>
<td>Has the use of zinc sulfate reduced the use of copper sulfate in treating foot disease in livestock?</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>If the material were prohibited:</td>
<td>We would have a harder time clearing up some hoof issues and may have to cull the cow</td>
</tr>
</tbody>
</table>
On behalf of our members across the supply chain and the country, the Organic Trade Association thanks the National Organic Standards Board for the opportunity to comment, and for your commitment to furthering organic agriculture.

Respectfully submitted,

Johanna Mirenda
Farm Policy Director
Organic Trade Association

cc: Laura Batcha
Executive Director/CEO
Organic Trade Association
Appendix A – Sample Survey for Crop and Livestock Inputs

1. Is your operation certified organic? Yes / No

2. Is [SUBSTANCE] included in your organic system plan? Yes / No

3. Which types of organic crops or livestock products do you use [SUBSTANCE] on/for? (e.g., lettuces, fruit trees, broiler chickens)

4. What function does [SUBSTANCE] provide and why is it necessary? (e.g., to control a specific pest or disease, sanitation, etc.)

5. With what frequency does your operation use [SUBSTANCE]? (e.g., seldom, as needed when a certain condition arises, routinely, etc.)

6. Have you tried using any other substances as an alternative to [SUBSTANCE]? (e.g., other substances that are on the National List and/or other natural substances.) If yes, please describe which substances you’ve tried and whether it was effective to fulfill the required function:

7. Are there any other management practices that would eliminate the need for [SUBSTANCE]? (e.g., hand weeding instead of using an herbicide; or using a particular harvesting practice to avoid a disease instead of using a fungicide). If so, please describe the efficacy of the alternative management practices:

8. How would your organic production be impacted if [SUBSTANCE] was no longer allowed? (describe the agronomic, environmental or human health effects, product quality, economic effects)

9. [If applicable - Insert specific questions from NOSB Subcommittee about the necessity of the substances and the availability of alternatives]

10. On a scale from 1 to 5 stars, rate the overall necessity of [SUBSTANCE] for your organic operation

<table>
<thead>
<tr>
<th>Unnecessary (don't need it at all)</th>
<th>Neutral (nice to have but could live without it)</th>
<th>Critical (would leave organic without it)</th>
</tr>
</thead>
<tbody>
<tr>
<td>🌟</td>
<td>🌟</td>
<td>🌟</td>
</tr>
</tbody>
</table>